赵志宏

职称:副教授,博导
电话:010-62795223
邮箱:zhzhao@tsinghua.edu.cn
通信地址:北京市海淀区清华大学土木馆(何善衡楼)401
邮编:100084

个人主页
教育背景

2008.10 - 2011.11 瑞典皇家工学院 工程地质 博士

2005.09 - 2008.01 北京科技大学 岩土工程 硕士

2001.09 - 2005.07 北京科技大学 土木工程 学士

工作履历

2020.07 - 清华大学 土木工程系 副系主任

2014.02 - 清华大学 土木工程系 讲师、助理教授、副教授、博导

2011.12 - 2014.06 斯德哥尔摩大学 地质科学系 博士后

2006.12 - 2008.09 香港理工大学 土木与结构工程系 研究助理

开设课程

1. 海绵城市导论(本科生)

2. 地下空间开发利用概论(本科生、合讲)

3. 科技论文写作与交流(研究生)

4. 高等岩石力学(研究生)

5. 土力学地基基础(本科生)

研究领域

岩石力学(裂隙岩体中THMC多场耦合)

地下工程(地热开发、核废料处置、深埋隧道)

数值方法(离散元、颗粒元)

科研项目

国家自然科学联合基金重点项目:高放废物处置多场耦合条件裂隙围岩渗流传质机理与模拟方法研究 (2021-2024)

国家重点研发计划课题:深部碳酸盐岩热储层天然构造及人工干预下综合评价技术 (2019-2022)

国家自然科学基金面上项目:水-岩作用下岩石裂隙的多尺度劣化规律与抗剪强度准则研究 (2018-2021)

国家自然科学基金重点项目:蓄水初期特高拱坝及山体异常变形的机制与控制(子课题,2018-2022)

国家重点研发计划课题:枢纽工程重要构筑物(群)与地质环境互馈作用机制与控制技术(子课题,2018-2021)

国家自然科学基金青年项目:增强型地热系统(EGS)裂隙岩体渗流传输特性的温度效应及离散元模拟研究(2016-2018)

清华大学自主科研青年项目:极深超大隧洞围岩稳定性及控制技术(2015-2018)

北京市自然科学基金面上项目:北京地热田储层渗透性对回灌的响应机理研究及应用(2015-2017)

学术兼职

SCI期刊 International Journal of Geomechanics 副主编

SCI期刊 Journal of Rock Mechanics and Geotechnical Engineering 编委

SCI期刊 Rock Mechanics and Rock Engineering 编委

SCI期刊 Computers and Geotechnics 编委

ISRM Commission on Radioactive Waste Disposal委员(2020-)

ISRM Commission on Coupled Thermal-Hydro-Mechanical-Chemical Processes in Fractured Rock 委员(2018-2020)

中国岩石力学与工程学会 副秘书长(兼职)

中国岩石力学与工程学会岩体数学模拟专业委员会 副秘书长

中国能源研究会地热专业委员会 委员

能源行业地热能专业标准化技术委员会 专家

奖励与荣誉

2021,河北省技术发明二等奖(第二完成人)

2020,中国岩石力学与工程学会自然科学一等奖(第一完成人)

2020,Coufrac2020 Plenary session for emerging scientists

2019,第28届全国结构工程学术会议 特邀报告

2018,第十届亚洲岩石力学大会(ARMS10)Young Researcher Plenary Lecture

2018,国土资源科学技术一等奖

2018,第十届中国岩石力学与工程学会青年科技奖

2017,第二届全国青年岩土力学与工程创新创业大赛三等奖

2017,第四届国际青年岩石力学会议(韩国)奖学金

2015,中国科协青年人才托举计划,

2014,北京市优秀人才培养资助(青年骨干),地下工程与隧道方向

学术成果

1、教材

[1] 赵志宏,土木工程学术论文写作与报告,清华大学出版社,2021


2、主编标准

[1] 能源行业标准《热储工程示踪试验规程》(NB/T 10703-2021) 主编

[2] 国土资源行业标准《砂岩热储地热尾水回灌技术规程》(DZ/T0330-2019) 参编

3、代表性论文(*通讯作者,#学生)

[1] Dou Z#, Gao T, Zhao Z*, Li J*, Yang Q, Yi S. 2021. Effect of immersion duration on shear behavior of granite fractures. Rock Mechanics and Rock Engineering. 54: 4809-4823.

[2] Xu H#, Cheng J#, Zhao Z*, Lin T, Liu G, Chen S. 2021. Coupled thermo-hydro-mechanical-chemical modeling on acid fracturing in carbonatite geothermal reservoirs containing a heterogeneous fracture. Renewable Energy. 172: 145-157.

[3] Zhao Z, Dou Z#, Liu G#,*, Chen S, Tan X. 2021. Equivalent flow channel model for doublets in heterogeneous porous geothermal reservoirs. Renewable Energy. 172: 100-111.

[4] Chen Y#,*, Liang W, Selvadurai APS, Zhao Z. 2021. Influence of asperity degradation and gouge formation on flow during rock fracture shearing. International Journal of Rock Mechanics and Mining Sciences. 143: 104795.

[5] Zhao Z, Chen S#, Chen Y#,*, Yang Q. 2021. On the effective stress coefficient of single rough rock fracture. International Journal of Rock Mechanics and Mining Sciences. 137: 104556.

[6] Chen Y#, Zhang C*, Zhao Z*, Zhao X. 2020. Shear behavior of artificial and natural granite fractures after heating and water-cooling treatment. Rock mechanics and Rock Engineering. 53: 5429-5449.

[7] Li B, Ye X, Dou Z#, Zhao Z*, Li Y, Yang Q. 2020. Shear strength of rock fractures under dry, surface wet and saturated conditions. Rock Mechanics and Rock Engineering. 53: 2605-2622.

[8] Zhao Z*, Guo T#, Li S, Wu W, Yang Q, Chen S#. 2020. Effects of joint surface roughness and orientational anisotropy on characteristics of excavation damage zone in jointed rocks. International Journal of Rock Mechanics and Mining Sciences. 128: 104265.

[9] Peng H#, Zhao Z*, Chen W, Chen Y, Fang Y, Li B. 2020. Thermal effect on permeability in a single granite fracture: Experiment and theoretical model. International Journal of Rock Mechanics and Mining Sciences. 131: 104358.

[10] Chen Y, Zhao Z*. 2020. Heat transfer in a 3D rough rock fracture with heterogeneous apertures. Journal of Rock Mechanics and Mining Sciences. 134: 104445.

[11] Liu G#, Wang G*, Zhao Z*, Ma F. 2020. A new well pattern of cluster-layout for deep geothermal reservoirs: Case study from the Dezhou geothermal field, China. Renewable Energy. 155: 484-499.

[12] Liu Z, Xu H#, Zhao Z*, Chen Z. 2019. DEM modeling of interaction between the propagating fracture and multiple pre-existing cemented discontinuities in shale. Rock Mechanics and Rock Engineering. 52: 1993-2001.

[13] Wang G, Liu G#, Zhao Z*, Liu Y, Pu H. 2019. A robust numerical method for modeling multiple wells in city-scale geothermal field based on simplified one-dimensional well model. Renewable Energy. 139-873-894.

[14] Zhao X, Xu H#, Zhao Z*, Guo Z, Cai M, Wang J. 2019. Thermal conductivity of thermally damaged Beishan granite under uniaxial compression. International Journal of Rock Mechanics and Mining Sciences. 115: 121-136.

[15] Liu G#, Pu H*, Zhao Z*, Liu Y. 2019. Coupled thermo-hydro-mechanical modeling on well pairs in heterogeneous porous geothermal reservoirs. Energy. 171: 631-653.

[16] Zuo J, Li Y, Zhang X, Zhao Z, Wang T. 2018. The effects of thermal treatments on the subcritical crack growth of Pingdingshan sandstone at elevated high temperatures. Rock Mechanics and Rock Engineering. 51: 3439-3454.

[17] Zhao Z*, Guo T#, Ning Z, Dou Z#, Dai F*, Yang Q. 2018. Numerical modeling of stability of fractured reservoir bank slopes subjected to water-rock interactions. Rock Mechanics and Rock Engineering. 51: 2517-2531.

[18] Zhao Z*, Peng H#, Wu W, Chen Y-F. 2018. Characteristics of shear-induced asperity degradation of rock fractures and implications for solute retardation. International Journal of Rock Mechanics and Mining Sciences. 105: 53-61.

[19] Zhao X, Zhao Z, Guo Z, Cai M, Li X, Li P-F, Chen L, Wang J. 2018. Influence of thermal treatment on the thermal conductivity of Beishan granite. Rock Mechanics and Rock Engineering. 51: 2055-2074

[20] Zhao Z*, Liu Z, Pu H, Li X. 2018. Effect of thermal treatment on Brazilian tensile strength of granites with different grain size distributions. Rock Mechanics and Rock Engineering. 51: 1293-1303.

[21] Zhao Z*, Yang J, Zhang D, Peng H.# 2017. Effects of wetting and cyclic wetting-drying on tensile strength of sandstone with a low clay mineral content. Rock Mechanics and Rock Engineering. 50: 485-491.

[22] Luo S, Zhao Z*, Peng H#, Pu H. 2016. The role of fracture surface roughness in macroscopic fluid flow and heat transfer in fractured rocks. International Journal of Rock Mechanics and Mining Sciences. 87: 29-38.

[23] Zhao Z.* 2016. Thermal influence on mechanical properties of granite: A micro-cracking perspective. Rock Mechanics and Rock Engineering. 49: 747-762.

[24] Zhao Z*, Li B, Jiang Y. 2014. Effects of fracture surface roughness on macroscopic fluid flow and solute transport in fracture networks. Rock Mechanics and Rock Engineering. 47: 2279-2286.

[25] Zhao Z*, Liu L, Neretnieks I, Jing L. 2014. Solute transport in a single fracture: impacted by chemically mediated changes. International Journal of Rock Mechanics and Mining Sciences. 66: 69-75.

[26] Zhao Z.* 2013. Gouge particle evolution in a rock fracture undergoing shear: A microscopic DEM study. Rock Mechanics and Rock Engineering. 46: 1461-1479.

[27] Zhao Z*, Jing L, Neretnieks I. 2012. Particle mechanics model for the effects of shear on solute retardation coefficient in rock fractures. International Journal of Rock Mechanics and Mining Sciences. 52: 92-102.

Baidu
sogou