钟宏志
职称:教授通信地址:北京市海淀区清华大学土木工程系邮编:100084电话:010-62781891传真:Email: hzz@tsinghua.edu.cn
教育背景
1981.8 - 1985.7 国防科技大学 航空航天工程系固体力学专业 学士 1985.8 - 1987.7 航天工业总公司运载火箭研究院总体部 硕士 1987.10 - 1990.10 英国牛津大学 工程科学系固体力学专业 博士
工作履历
1990.10 - 1993.10 英国牛津大学Rolls-Royce 固体力学中心 博士后 1994.4 - 1996.7 清华大学土木工程系 讲师 1996.7 - 2004.12 清华大学土木工程系 副教授 2004.12 - 今 清华大学土木工程系 教授
开设课程
1. 《结构力学II》(英文)200301422. 《有限元与变分法基础》 700300333. 《计算结构力学导论》 400310214. 《求积元法与应用》 80030341
研究领域
弱形式求积元法的发展与应用;工程结构非线性数值分析;面向目标有限元误差分析。
科研项目
国家自然科学基金面上项目 求积元法的发展与应用求积元法 (2008.1~2010.12)国家自然科学基金面上项目 板壳非线性求积元的开发与在剪力墙抗震分析中的应用 (2012.1~2015.12)国家自然科学基金面上项目 网壳稳定性的弱形式求积元分析 (2014.1~2017.12)
学术兼职
International Journal of Advanced Structural Engineering,编委
奖励与荣誉
2001年 国家级教学成果一等奖 排名第四2001年 北京市教学成果一等奖 排名第四1997年 宝钢优秀教师奖
学术成果
1. Shuai Yuan, Hongzhi Zhong, A weak form quadrature element formulation for coupled analysis of unsaturated soils, Computers and Geotechnics, 2016. 76(June): 1-11Mengwu Guo, Hongzhi Zhong, Kuan You, A second-order perturbation method for fuzzy eigenvalue problems, Engineering Computations, 2016 33(2)Li Wang, Ludovic Chamoin, Pierre Ladev`eze, Hongzhi Zhong, Computable upper and lower bounds on eigenfrequencies, Computer Methods in Applied Mechanics and Engineering, 2016, April, 302:27–43Run Zhang, Hongzhi Zhong, A quadrature element formulation of an energy-momentum conserving algorithm for dynamic analysis of geometrically exact beams, Computers & Structures, 2016, 165:96-106Shuai Yuan, Hongzhi Zhong, Three dimensional analysis of unconfined seepage in earth dams by the weak form quadrature element method, Journal of Hydrology, 2016, February, 533:403-411Minmao Liao, Hongzhi Zhong, Application of a Weak Form Quadrature Element Method to Nonlinear Free Vibrations of Thin Rectangular Plates, International Journal of Structural Stability and Dynamics 2016,16(01):(doi: 10.1142/S0219455416400010)Minmao Liao, Hongzhi Zhong, A weak form quadrature element method for nonlinear free vibrations of Timoshenko beams, Engineering Computations, 2016 Vol. 33 Iss: 1, pp.274 – 287Li Wang, Hongzhi Zhong, Strict upper and lower bounds of stress intensity factors at 2D elastic notches based on constitutive relation error estimation, Computational Mechanics, 2015, 56(5):739-752Mengwu Guo, Hongzhi Zhong, Goal-oriented error estimation for beams on elastic foundation with double shear effect, Applied Mathematical Modelling, 2015, 39: 4699–4714Li Wang, Mengwu Guo, Hongzhi Zhong, Strict upper and lower bounds of quantities for beams on elastic foundation by dual analysis, Engineering Computation, 2015, 32(6):1619-1642Run Zhang, Hongzhi Zhong, Weak form quadrature element analysis of geometrically exact shells, International Journal of Non-Linear Mechanics, 71(May): 63–71, 2015Li Wang, Hongzhi Zhong, A unified approach to strict upper and lower bounds of quantities in linear elasticity based on constitutive relation error estimation, Computer Methods in Applied Mechanics and Engineering, 2015, April 1, 286:332–353,Li Wang, Hongzhi Zhong, Stable linear traction-based equilibrium elements for elastostatics: direct access to linear statically admissible stresses and quadratic kinematically admissible displacements for dual analysis, International Journal for Numerical Methods in Engineering, 101(12): 887–923, 2015, MarchShuai Yuan, Hongzhi Zhong, Consolidation analysis of non-homogeneous soil by the weak form quadrature element method, Computers and Geotechnics, 62(October) 2014, 1-10Li Wang, Hongzhi Zhong, A traction-based equilibrium finite element free from spurious kinematic modes for linear elasticity problems, International Journal for Numerical Methods in Engineering, 2014; 99:763–788Hongzhi Zhong, Run Zhang, Naijia Xiao, A quaternion-based weak form quadrature element formulation for spatial geometrically exact beams, Archive of Applied Mechanics, 2014, 84(12): 1825-1840, 2014Run Zhang, Hongzhi Zhong, Weak form quadrature element analysis of spatial geometrically exact shear-rigid beams, Finite Elements in Analysis and Design, 87(15): 22–31, 2014Run Zhang, Hongzhi Zhong, Weak form quadrature element analysis of planar slender beams based on geometrically exact beam theory, Archive of Applied Mechanics, 83(9): 1309-1325, 2013Zhiqiang Shen, Hongzhi Zhong, Static and Vibrational Analysis of Partially Composite Beams Using the Weak Form Quadrature Element Method, Mathematical Problems in Engineering, Volume 2012, Article ID 974023, 23 pagesHongzhi Zhong, Zhiguang Yue, Analysis of thin plates by the weak form quadrature element method, SCIENCE CHINA Physics, Mechanics & Astronomy, 55(5): 861–871, 2012Naijia Xiao, Hongzhi Zhong, Nonlinear Quadrature Element Analysis of Planar Frames Based on Geometrically Exact Beam Theory, International Journal of Non-Linear Mechanics, 47(5): 481–488, 2012Rui He, Hongzhi Zhong, Large deflection elasto-plastic analysis of frames using the weak-form quadrature element method, Finite Elements in Analysis and Design, 50(1): 125-133, 2012Hongzhi Zhong,Chunlin Pan and Hao Yu, Buckling analysis of shear deformable plates using the quadrature element method, Applied Mathematical Modelling, 35(10):5059–5074, 2011Hongzhi Zhong,Run Zhang And Hao Yu, Buckling Analysis of Planar Frameworks Using the Quadrature Element Method, International Journal of Structural Stability and Dynamics, Vol. 11(2):363-378, 2011Hongzhi Zhong, Ming Gao, Quadrature element analysis of planar frameworks, Archive of Applied Mechanics, 2010, 80 (12) :1391-1405.Hongzhi Zhong, Yu Wang. Weak form quadrature element analysis of Bickford Beams, European Journal of Mechanics A/Solids, 2010, 29 (5) : 851-858. Hongzhi Zhong, Tian Yu. A weak form quadrature element method for plane elasticityproblems, Applied Mathematical Modelling, 2009, 33(10): 3801-3814.Yihua Mo, Li Ou, Hongzhi Zhong. Vibration Analysis of Timoshenko Beams on a Nonlinear Elastic Foundation. Tsinghua Science and Technology, 2009, 14(3): 322-326.Minmao Liao, Hongzhi Zhong, Nonlinear vibration analysis of Timoshenko beams, Chaos, Solitons and Fractals, 2008, 36(5):1267-1272.Hongzhi Zhong, Minmao Liao, Higher-order nonlinear analysis of Timoshenko beams by the spline-based differential quadrature method. Shock and Vibration,2007, 14(6):407-416Hongzhi Zhong,Chao Gu, Buckling of symmetric cross-ply laminates under a linearly varying load,Composite Structures, 2007, 80(1):42-48Hongzhi Zhong, Tian Yu. Flexural vibration analysis of an eccentric annular Mindlin plate,Archive of Applied Mechanics,77(4):185-195,2007Hongzhi Zhong,Mengyu Lan,Solution of nonlinear initial value Duffing equations by spline-based differential quadrature method, Journal fo Sound and vibration, 2006, 296(4/5):908-918.Hongzhi Zhong, Chao Gu, Buckling analysis of Reissner-Mindlin plates under linerlyvarying load, Journal of Engineering Mechanics, ASCE, 2006, May, 132(5):578-581.