[1] *Long, D., Yang W.T., Scanlon, B.R., Zhao, J.S., Liu, D.G., Burek, P., Pan, Y., You, L. Z., and Wada, Y (2020). South-to-North Water Diversion stabilizing Beijing’s groundwater levels. Nature Communications, 11(1), 1‒10.
[2] *Long, D., Yan, L., Bai, L.L., Zhang, C.J., Li, X.Y., Lei, H.M., Yang, H.B., Tian, F.Q., Zeng, C., Meng, X.Y., and Shi, C.X(2020). Generation of MODIS-like land surface temperatures under all-weather conditions based on a data fusion approach. Remote Sensing of Environment, 246, 111863
[3] *Long, D., Bai, L., Yan, L., Zhang, C., Yang, W., Lei, H., *Quan, J., Meng, X., and Shi, C. (2019). Generation of spatially complete and daily continuous surface soil moisture of high spatial resolution. Remote Sensing of Environment, 233, 111364.
[4] *Long, D., Pan, Y., Zhou, J., Chen, Y., Hou, X.Y., Hong, Y., Scanlon, B.R., and Longuevergne, L. (2017). Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sensing of Environment, 192, 198-216.
[5] *Long, D., Chen, X., Scanlon, B.R., Wada, Y., Hong, Y., Singh, V.P., Chen, Y., Wang, C., Han, Z., and Yang, W. (2016). Have GRACE satellites overestimated groundwater depletion in the Northwest India Aquifer? Scientific Reports, 6, 24398.
[6] *Long, D., Longuevergne, L., and Scanlon, B.R. (2015a). Global analysis of approaches for deriving total water storage changes from GRACE satellites. Water Resources Research, 51, 2574-2594.
[7] *Long, D., Yang, Y.T., Wada, Y., Hong, Y., Liang, W., Chen, Y.N., Yong, B., Hou, A.Z., Wei, J.F., and Chen, L. (2015b). Deriving scaling factors using a global hydrological model to restore GRACE total water storage changes for China's Yangtze River basin. Remote Sensing of Environment, 168, 177-193.
[8] *Long, D., Longuevergne, L., and Scanlon, B.R. (2014a). Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resources Research, 50, 1131–1151.
[9] *Long, D., Shen, Y.J., Sun, A.Y., Hong, Y., Longuevergne, L., Yang, Y.T., Li, B., and Chen, L. (2014b). Drought and flood monitoring for a large karst plateau in Southwest China using extended GRACE data. Remote Sensing of Environment, 145–160.
[10] *Long, D., Scanlon, B.R., Longuevergne, L., Sun, A.-Y., Fernando, D.N., and Save, H. (2013). GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas. Geophysical Research Letters, 40, 3395–3401.
[11] *Long, D., and Singh, V.P. (2013a). Assessing the impact of end-member selection on the accuracy of satellite-based spatial variability models for actual evapotranspiration estimation. Water Resources Research, 49, 2601–2618.
[12] *Long, D., and Singh, V.P. (2013b). An entropy-based multispectral image classification algorithm. IEEE Transactions on Geoscience and Remote Sensing, 51, 5225–5238.
[13] *Long, D., Scanlon, B.R., Fernando, D.N., Meng, L., and Quiring, S.M. (2012a). Are Temperature and Precipitation Extremes Increasing over the U.S. High Plains? Earth Interactions, 16, 1–20.
[14] *Long, D., Singh, V.P., and Scanlon, B.R. (2012b). Deriving theoretical boundaries to address scale dependencies of triangle models for evapotranspiration estimation. Journal of Geophysical Research-Atmospheres, 117.
[15] *Long, D., and Singh, V.P. (2012a). A modified surface energy balance algorithm for land (M-SEBAL) based on a trapezoidal framework. Water Resources Research, 48.
[16] *Long, D., and Singh, V.P. (2012b). A Two-source Trapezoid Model for Evapotranspiration (TTME) from satellite imagery. Remote Sensing of Environment, 121, 370–388.
[17] *Long, D., Singh, V.P., and Li, Z.L. (2011). How sensitive is SEBAL to changes in input variables, domain size and satellite sensor? Journal of Geophysical Research-Atmospheres, 116.
[18] *Long, D., Gao, Y.C., and Singh, V.P. (2010). Estimation of daily average net radiation from MODIS data and DEM over the Baiyangdian watershed in North China for clear sky days. Journal of Hydrology, 388, 217–233.
[19] *Long, D., and Singh, V.P. (2010). Integration of the GG model with SEBAL to produce time series of evapotranspiration of high spatial resolution at watershed scales. Journal of Geophysical Research-Atmospheres, 115.
[20] Li. X.Y., and *Long, D. (2020). An improvement in accuracy and spatiotemporal continuity of the MODIS precipitable water vapor product based on a data fusion approach. Remote Sensing of Environment, 248, 111966.
[21] Sun, Z.L., *Long, D., Yang W.T., Li. X.Y., and Pan, Y. (2020). Reconstruction of GRACE data on changes in total water storage over the global land surface and 60 basins. Water Resources Research, 55, e2019WR026250.
[22] Han, Z.Y., *Long, D., Huang, Q., Li, X.D., Zhao, F.Y., and Wang, J.H. (2020). Improving reservoir outflow estimation for ungauged basins using satellite observations and a hydrological model. Water Resources Research, 56, e2020WR027590.
[23] Huang, Q., *Long, D., Du, M.D., Han, Z.Y., and Han, P.F. (2020). Daily continuous river discharge estimation for ungauged basins using a hydrologic model calibrated by satellite altimetry: Implications for the SWOT mission. Water Resources Research, 56, e2020WR027309.
[24] Bai, L., *Long, D., Yan, L., 2019. Estimation of surface soil moisture with downscaled land surface temperatures using a data fusion approach for heterogeneous agricultural land. Water Resources Research, 55, 1105‒1128.
[25] Li, X., *Long, D., Huang, Q., Han, P., Zhao, F., and Wada, Y. (2019). High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions. Earth System Science Data, 11, 1603–1627.
[26] Yang, W., *Long, D., and Bai, P. (2019). Impacts of future land cover and climate changes on runoff in the mostly afforested river basin in North China. Journal of Hydrology, 570, 201‒219.
[27] Han, Z., *Long, D., Fang, Y., Hou, A., and Hong, Y. (2019). Impacts of climate change and human activities on the flow regime of the dammed Lancang River in Southwest China. Journal of Hydrology, 570, 96‒105.
[28] Li, X.Y., *Long, D., Han, Z.Y., Scanlon, B.R., Sun, Z.L., Han, P.F., and Hou, A.Z. (2019). Evapotranspiration estimation for Tibetan Plateau headwaters using conjoint terrestrial and atmospheric water balances and multisource remote sensing. Water Resources Research, 55, 8608‒8630.
[29] Han, P., *Long, D., Han, Z., Du, M., Dai, L., and Hao, X. (2019). Improved understanding of snowmelt runoff from the headwaters of China's Yangtze River using remotely sensed snow products and hydrological modeling. Remote Sensing of Environment, 224, 44‒59.
[30] Chen, X.N., *Long, D., Liang, S.L., He, L., Zeng, C., Hao, X.H., and Hong, Y. (2018). Developing a composite daily snow cover extent record over the Tibetan Plateau from 1981 to 2016 using multisource data. Remote Sensing of Environment, 215, 284‒299.
[31] Huang, Q., *Long, D., Du, M.D., Zeng, C., Li, X.D., Hou, A.Z., and Hong, Y. (2018). An improved approach to monitoring Brahmaputra River water levels using retracked altimetry data. Remote Sensing of Environment, 211, 112‒128.
[32] Huang, Q., *Long, D., Du, M.D., Zeng, C., Qiao, G., Li, X.D., Hou, A.Z., and Hong, Y. (2018). Discharge estimation in high-mountain regions with improved methods using multisource remote sensing: A case study of the Upper Brahmaputra River. Remote Sensing of Environment, 219, 115‒134.
[33] Tang, G.Q., *Long, D., *Hong, Y., Gao, J.Y., and Wan, W. (2018). Documentation of multifactorial relationships between precipitation and topography of the Tibetan Plateau using spaceborne precipitation radars. Remote Sensing of Environment, 208, 82‒96.
[34] Zeng, C., *Long, D., Shen, H., Wu, P., Cui, Y., and *Hong, Y. (2018). A two-step framework for reconstructing remotely sensed land surface temperatures contaminated by cloud. ISPRS Journal of Photogrammetry and Remote Sensing, 141, 30‒45.
[35] Tang, G., *Long, D., Behrangi, A., Wang, C., and *Hong, Y (2018). Exploring deep neural networks to retrieve rain and snow in high latitudes using multisensor and reanalysis data. Water Resources Research, 54 (10), 8253‒8278.
[36] Chen, X.N., *Long, D., Hong, Y., Hao, X.H., and Hou, A.Z. (2018). Climatology of snow phenology over the Tibetan plateau for the period 2001-2014 using multisource data. International Journal of Climatology, 38, 2718‒2729.
[37] Chen, X., *Long, D., Hong, Y., Zeng, C., and Yan, D.H. (2017a). Improved modeling of snow and glacier melting by a progressive two-stage calibration strategy with GRACE and multisource data: How snow and glacier meltwater contributes to the runoff of the Upper Brahmaputra River basin? Water Resources Research, 53, 2431‒2466.
[38] Chen, X.N., *Long, D., Hong, Y., Liang, S.L., and Hou, A.Z. (2017b). Observed radiative cooling over the Tibetan Plateau for the past three decades driven by snow cover-induced surface albedo anomaly. Journal of Geophysical Research-Atmospheres, 122, 6170‒6185.
[39] Gao, Z., *Long, D., Tang, G.Q., Zeng, C., Huang, J.S., and Hong, Y. (2017). Assessing the potential of satellite-based precipitation estimates for flood frequency analysis in ungauged or poorly gauged tributaries of China's Yangtze River basin. Journal of Hydrology, 550, 478‒496.
[40] Li, D.N., Long, D., *Zhao, J.S., Lu, H., and Hong, Y. (2017). Observed changes in flow regimes in the Mekong River basin. Journal of Hydrology, 551, 217‒232.
[41] Cui, Y.K., *Long, D., *Hong, Y., Zeng, C., Zhou, J., Han, Z.Y., Liu, R.H., and Wan, W. (2016). Validation and reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau. Journal of Hydrology, 543, 242‒254.
[42] Hou, X.Y., *Long, D., *Hong, Y., and Xie, H.J. (2016). Seasonal to interannual variability of satellite-based precipitation estimates in the Pacific Ocean associated with ENSO from 1998 to 2014. Remote Sensing, 8, 18.
[43] Tang, G.Q., *Long, D., and *Hong, Y. (2016b). Systematic anomalies over inland water bodies of High Mountain Asia in TRMM precipitation estimates: No longer a problem for the GPM Era? IEEE Geoscience and Remote Sensing Letters, 13, 1762‒1766.
[44] Wan, W., Long, D., *Hong, Y., Ma, Y.Z., Yuan, Y., Xiao, P.F., Duan, H.T., Han, Z.Y., and *Gu, X.F. (2016). A lake data set for the Tibetan Plateau from the 1960s, 2005, and 2014. Scientific Data, 3, 13.
[45] *Yang, Y.T., Long, D., Guan, H.D., Liang, W., Simmons, C.T., and Batelaan, O. (2015b). Comparison of three dual-source remote sensing evapotranspiration models during the MUSOEXE-12 campaign: Revisit of model physics. Water Resources Research, 51, 3145‒3165.
[46] Meng, L., Long, D., Quiring, S.M., and *Shen, Y. (2014). Statistical analysis of the relationship between spring soil moisture and summer precipitation in East China. International Journal of Climatology, 34, 1511‒1523.
[47] *Yang, Y., Long, D., Guan, H., Scanlon, B.R., Simmons, C.T., Jiang, L., and Xu, X. (2014a). GRACE satellite observed hydrological controls on interannual and seasonal variability in surface greenness over mainland Australia. Journal of Geophysical Research: Biogeosciences, 119, 2014JG002670.
[48] *Yang, Y.T., Long, D., and Shang, S.H. (2013). Remote estimation of terrestrial evapotranspiration without using meteorological data. Geophysical Research Letters, 40, 3026‒3030.
[49] *Gao, Y.C., and Long, D. (2008). Intercomparison of remote sensing-based models for estimation of evapotranspiration and accuracy assessment based on SWAT. Hydrological Processes, 22, 4850‒4869.
[50] *Gao, Y.C., Long, D., and Li, Z.L. (2008). Estimation of daily actual evapotranspiration from remotely sensed data under complex terrain over the upper Chao river basin in North China. International Journal of Remote Sensing, 29, 3295‒3315.
[51] Tang, G., Behrangi, A., Long, D.*, Li, C., and Hong, Y.*, 2018. Accounting for spatiotemporal errors of gauges: A critical step to evaluate gridded precipitation products. Journal of Hydrology, 294‒306.
[52] *Zheng, H., Hong, Y., Long, D., and Jing, H. (2017). Monitoring surface water quality using social media in the context of citizen science. Hydrology and Earth System Sciences, 21, 949‒961.
[53] Tang, G., Ma, Y., *Long, D., Zhong, L., and *Hong, Y. (2016a). Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales. Journal of Hydrology, 533, 152‒167.
[54] Ma, Y.Z., Tang, G.Q., *Long, D., Yong, B., Zhong, L.Z., Wan, W., and *Hong, Y. (2016). Similarity and error intercomparison of the GPM and its predecessor-TRMM multisatellite precipitation analysis using the best available hourly gauge network over the Tibetan Plateau. Remote Sensing, 8, 17.
[55] Zeng, Z.Y., Tang, G.Q., *Long, D., Zeng, C., Ma, M.H., *Hong, Y., Xu, H., and Xu, J. (2016). A cascading flash flood guidance system: development and application in Yunnan Province, China. Natural Hazards, 84, 2071‒2093.
[56] Tang, G.Q., Zeng, Z.Y., *Long, D., Guo, X.L., Yong, B., Zhang, W.H., and Hong, Y. (2015). Statistical and hydrological comparisons between TRMM and GPM Level-3 products over a mid-latitude basin: Is Day-1 IMERG a good successor for the TMPA 3B42 Version-7 legacy? Journal of Hydrometeorology, 17, 121‒137.
[57] *Yang, Y., Guan, H., Long, D., Liu, B., Qin, G., Qin, J., and Batelaan, O. (2015a). Estimation of surface soil moisture from thermal infrared remote sensing using an improved trapezoid method. Remote Sensing, 7, 8250.
[58] Scanlon, B.R., Longuevergne, L., and Long, D. (2012). Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resources Research, 48.
[59] Huang, Q., Li, X., Han, P., *Long, D., Zhao, F., and Hou, A. (2019). Validation and application of water levels derived from Sentinel-3A for the Brahmaputra River. Science China Technological Sciences, 62, 1760‒1772.
[60] Tang, G., *Behrangi, A., Ma, Z., Long, D., and *Hong, Y., 2018. Downscaling of ERA-Interim temperature in the contiguous United States and its implications for rain-snow partitioning. Journal of Hydrometeorology, 19: 1215‒1233.
[61] Tang, G.Q., Wen, Y.X., Gao, J.Y., *Long, D., Ma, Y.Z., Wan, W., and *Hong, Y. (2017a). Similarities and differences between three coexisting spaceborne radars in global rainfall and snowfall estimation. Water Resources Research, 53, 3835‒3853.
[62] Wan, W., Bai, W.H., Zhao, L.M., Long, D., Sun, Y.Q., Meng, X.G., Chen, H., Cui, X.A., and Hong, Y. (2015). Initial results of China's GNSS-R airborne campaign: soil moisture retrievals. Science Bulletin, 60, 964‒971.
[63] *Yang, Y.T., Guan, H.D., Shang, S.H., Long, D., and Simmons, C.T. (2014b). Toward the use of the MODIS ET product to estimate terrestrial GPP for nonforest ecosystems. IEEE Geoscience and Remote Sensing Letters, 11, 1624‒1628.
[64] Yang, X.*, Yong B.*, Ren, L., Zhang, Y., and Long, D. (2017). Multi-scale validation of GLEAM evapotranspiration products over China via ChinaFLUX ET measurements. International Journal of Remote Sensing, 38 (20), 5688‒5709.
[65] Wan, W., Li, H., *Xie, H.J., *Hong, Y., Long, D., Zhao, L.M., Han, Z.Y., Cui, Y.K., Liu, B.J., Wang, C.G., and Yang, W.T. (2017). A comprehensive data set of lake surface water temperature over the Tibetan Plateau derived from MODIS LST products 2001-2015. Scientific Data, 4, 10.
[66] *Yang, Y.T., Guan, H., Batelaan, O., McVicar, T.R., Long, D., Piao, S.L., Liang, W., Liu, B., Jin, Z., and Simmons, C.T. (2016). Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Scientific Reports, 6, 8.
[67] Tong, X., *Liu, T.X., Singh, V.P., Duan, L.M., and Long, D. (2016). Development of in situ experiments for evaluation of anisotropic reflectance effect on spectral mixture analysis for vegetation cover. IEEE Geoscience and Remote Sensing Letters, 13, 636‒640.
[68] Pei, H.W., Scanlon, B.R., *Shen, Y.J., Reedy, R.C., Long, D., and Liu, C.M. (2015). Impacts of varying agricultural intensification on crop yield and groundwater resources: comparison of the North China Plain and US High Plains. Environmental Research Letters, 10, 14.
[69] Tang, Y., Hooshyar, M., Zhu, T.J., Ringler, C., Sun, A.Y., Long, D., and *Wang, D.B. (2017b). Reconstructing annual groundwater storage changes in a large-scale irrigation region using GRACE data and Budyko model. Journal of Hydrology, 551, 397‒406.
[70] *Scanlon, B.R., Zhang, Z.Z., Save, H., Wiese, D.N., Landerer, F.W., Long, D., Longuevergne, L., and Chen, J. (2016). Global evaluation of new GRACE mascon products for hydrologic applications. Water Resources Research, 52, 9412‒9429.
[71] *Scanlon, B.R., Zhang, Z.Z., Reedy, R.C., Pool, D.R., Save, H., Long, D., Chen, J., Wolock, D.M., Conway, B.D., and Winester, D. (2015). Hydrologic implications of GRACE satellite data in the Colorado River Basin. Water Resources Research, 51, 9891‒9903.
[72] Liang, W., Yang, Y., Fan, D., Guan, H., Zhang, T., Long, D., Zhou, Y., and Bai, D. (2015b). Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010. Agricultural and Forest Meteorology, 204, 22‒36.
[73] Yang, L., Song, X., Zhang, Y., Han, D., Zhang, B., and Long, D. (2012). Characterizing interactions between surface water and groundwater in the Jialu River basin using major ion chemistry and stable isotopes. Hydrology and Earth System Sciences, 16, 4265‒4277.
[74] Ma, Y., *Hong, Y., Chen, Y., Yang, Y., Tang, G., Yao, Y., Long, D., Li, C., Han, Z., and *Liu, R. (2018). Performance of optimally merged multisatellite precipitation products using the dynamic Bayesian model averaging scheme over the Tibetan Plateau. Journal of Geophysical Research-Atmospheres, 123: 814‒834.
[75] Liu, X., *Song, X.F., Zhang, Y.H., Xia, J., Zhang, X.C., Yu, J.J., Long, D., Li, F.D., and Zhang, B. (2011). Spatio-temporal variations of delta H-2 and delta O-18 in precipitation and shallow groundwater in the Hilly Loess Region of the Loess Plateau, China. Environmental Earth Sciences, 63, 1105‒1118.
[76] Liang, W., *Bai, D., Wang, F., Fu, B., Yan, J., Wang, S., Yang, Y., Long, D., and Feng, M. (2015a). Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China's Loess Plateau. Water Resources Research, 51, 6500‒6519.
[77] Scanlon, B.R.*, Zhang, Z., Save, H., Sun, A.Y., Mueller Schmied, H., van Beek, L.P.H., Wiese, D.N., Wada, Y., Long D., Reedy, R. C., Longuevergne, L., Doll, P., and Bierkens, M.F.P. (2018). Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proceedings of the National Academy of Sciences of the United States of America, 115 (6): E1080‒1089.
[78] *Li, B.L., Rodell, M., Kumar, S., Beaudoing, H.K., Getirana, A., Zaitchik, B.F., de Goncalves, L.G., Cossetin, C., Bhanja, S., Mukherjee, A., Tian, S.Y., Tangdamrongsub, N., Long, D., Nanteza, J., Lee, J., Policelli, F., Goni, I.B., Daira, D., Bila, M., de Lannoy, G., Mocko, D., Steele-Dunne, S.C., Save, H., and Bettadpur, S. (2019). Global GRACE data assimilation for groundwater and drought monitoring: Advances and challenges. Water Resources Research, 55, 7564‒7586.